1,181 research outputs found

    The electromagnetic calorimeter of the AMS-02 experiment

    Full text link
    The electromagnetic calorimeter (ECAL) of the AMS-02 experiment is a 3-dimensional sampling calorimeter, made of lead and scintillating fibers. The detector allows for a high granularity, with 18 samplings in the longitudinal direction, and 72 sampling in the lateral direction. The ECAL primary goal is to measure the energy of cosmic rays up to few TeV, however, thanks to the fine grained structure, it can also provide the separation of positrons from protons, in the GeV to TeV region. A direct measurement of high energy photons with accurate energy and direction determination can also be provided.Comment: Proceedings of SF2A conference 201

    An alternative model for the electroweak symmetry breaking sector and its signature in future e-gamma colliders

    Full text link
    We perform a preliminary study of the deviations from the Standard Model prediction for the cross section for the process eÎłâ†’ÎœeWÎłe \gamma \rightarrow \nu_e W \gamma. We work in the context of a higgsless chiral lagrangian model that includes an extra vector resonance VV and an anomalous ÎłWV\gamma W V coupling. We find that this cross section can provide interesting constraints on the free parameters of the model once it is measured in future eÎłe \gamma colliders.Comment: LaTex , 14 pages, 5 figures not included but available as postscript files upon request, NUB-3086/94-T

    Phenomenology of a non-standard top quark Yukawa coupling

    Get PDF
    There are theoretical speculations that the top quark may have different properties from that predicted by the standard model. We use an effective Lagrangian technique to model such a non-standard top quark scenario and study its effects on the electroweak baryogenesis, low and high energy physics.Comment: (TeX file, Figures available by request) AMES-HET 94-05, June 199

    Exclusive Production of Higgs Bosons in Hadron Colliders

    Full text link
    We study the exclusive, double--diffractive production of the Standard Model Higgs particle in hadronic collisions at LHC and FNAL (upgraded) energies. Such a mechanism would provide an exceptionally clean signal for experimental detection in which the usual penalty for triggering on the rare decays of the Higgs could be avoided. In addition, because of the color singlet nature of the hard interaction, factorization is expected to be preserved, allowing the cross--section to be related to similar hard--diffractive events at HERA. Starting from a Fock state expansion in perturbative QCD, we obtain an estimate for the cross section in terms of the gluon structure functions squared of the colliding hadrons. Unfortunately, our estimates yield a production rate well below what is likely to be experimentally feasible.Comment: 17 pages, RevTeX file, four uufiled PostScript figures. UMPP #94-177. (Revised version. Some mistakenly missing Feynman diagrams are now added. Results do not change qualitatively. Paper reorganized.

    Aspects of the electroweak phase transition in the Minimal Supersymmetric Standard Model

    Full text link
    We study the finite-temperature effective potential of the Minimal Supersymmetric Standard Model in the full (mA, tan(beta)) parameter space. As for the features of the electroweak phase transition, we identify two possible sources of significant differences with respect to the Standard Model: a stop sector with little supersymmetry breaking makes the phase transition more strongly first-order, whereas a light CP-odd neutral boson weakens its first-order nature. After including the leading plasma effects, T=0 radiative corrections due to top and stop loops, and the most important experimental constraints, we find that the danger of washing out any baryon asymmetry created at the electroweak scale is in general no less than in the Standard Model.Comment: 13 pages, 3 figures appended at the end as uuencoded ps-files, preprint CERN-TH.7057/9

    Skyrmion Multi-Walls

    Full text link
    Skyrmion walls are topologically-nontrivial solutions of the Skyrme system which are periodic in two spatial directions. We report numerical investigations which show that solutions representing parallel multi-walls exist. The most stable configuration is that of the square NN-wall, which in the N→∞N\to\infty limit becomes the cubically-symmetric Skyrme crystal. There is also a solution resembling parallel hexagonal walls, but this is less stable.Comment: 7 pages, 1 figur

    H.E.S.S. observations of gamma-ray bursts in 2003-2007

    Full text link
    Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray bursts (GRBs) in some scenarios. Exploring this photon energy regime is necessary for understanding the energetics and properties of GRBs. GRBs have been one of the prime targets for the H.E.S.S. experiment, which makes use of four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays. Dedicated observations of 32 GRB positions were made in the years 2003-2007 and a search for VHE gamma-ray counterparts of these GRBs was made. Depending on the visibility and observing conditions, the observations mostly start minutes to hours after the burst and typically last two hours. Results from observations of 22 GRB positions are presented and evidence of a VHE signal was found neither in observations of any individual GRBs, nor from stacking data from subsets of GRBs with higher expected VHE flux according to a model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from the GRB positions were derived. For those GRBs with measured redshifts, differential upper limits at the energy threshold after correcting for absorption due to extra-galactic background light are also presented.Comment: 9 pages, 4 tables, 3 figure

    Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017

    Full text link
    Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the H.E.S.S. array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nancay Radio Telescope. Results: A signal of 173 gamma-ray photons corresponding to a statistical significance of 6.6 sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from the SED in Swift data, allows clearly classification it as a high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures

    Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP

    Get PDF
    Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured

    Search for Branons at LEP

    Full text link
    We search, in the context of extra-dimension scenarios, for the possible existence of brane fluctuations, called branons. Events with a single photon or a single Z-boson and missing energy and momentum collected with the L3 detector in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are analysed. No excess over the Standard Model expectations is found and a lower limit at 95% confidence level of 103 GeV is derived for the mass of branons, for a scenario with small brane tensions. Alternatively, under the assumption of a light branon, brane tensions below 180 GeV are excluded
    • 

    corecore